|
|
|
Прямой лабораторный микроскоп CX43 Доступно: светлое поле (BF), тёмное поле (DF), флуоресценция (FL), поляризация (POL), фазовый контраст (PH) |
Прямой исследовательский микроскоп BX63 Доступно: светлое поле (BF), тёмное поле (DF), флуоресценция (FL), поляризация (POL), ДИК (DIC), фазовый контраст (PH) |
Инвертированный микроскоп IX73 Доступно: светлое поле (BF), флуоресценция (FL), контраст Хоффмана (RC), ДИК (DIC) фазовый контраст (PH) |
В биологии используются различные микроскопы с эндоскопическим (проходящим) освещением. Есть работы, подразумевающие пользование ртутных ламп, LED, лазеров, иного источника возбуждающего света для флуоресценции окрашенных образцов. Крайне редко применяются микроскопы с эпископическим (отражённым/падающим) освещением, потому что круг их применения ограничивается изучением поверхности, непрозрачных, пористых объектов, например, чешуи, костной, зубной ткани, раковин мелких моллюсков, ракообразных, некоторых водорослей. Исследовательское оборудование всегда сочетает в себе несколько видов освещения, между ними должно быть удобно переключаться.
Отличительные особенности биологического микроскопа:
-
эндоскопическое освещение, для изучения прозрачных, полупрозрачных объектов
-
флуоресцентная лампа, для дифференциальной визуализации окрашенных клеток
-
большинство наблюдений в светлом поле, тёмном, с иммерсией
-
зажимы для лабораторной посуды или предметных стёкол
-
инкубационные камеры и работа с культурами in-vitro
-
микроманипуляторы для ЭКО и других исследований
-
множество светофильтров
-
конденсор с различными вставками и режимами освещения
- инкубационные камеры для роста клеток
У таких приборов есть два основных вида компоновки: прямые и инвертированные
В первом случае, Вы сможете легко смотреть препараты на предметных стёклах в максимальном, доступном оптике, увеличении. Этот микроскоп применяют в школах, университетах, училищах, дома, поэтому каждому человеку интуитивно понятна логика перемещения образца и необходимая подготовка стёкол. Используя инвертированную компоновку можно просматривать живые культуры, колбы, чашки, флаконы, планшеты с лунками, микробиологические матрацы, не опасаясь касания биоматериала, не нужно думать о загрязнении, повреждении чечевиц.
Ранее применялись государственные стандарты для подбора микроскопа под определённые задачи
ГОСТ 8284-78 – «Микроскопы световые биологические. типы, основные параметры и размеры» – недействителен.
ГОСТ 8211-56 – «Микроскопы биологические. Столики предметные. Размеры и расположение отверстий под приспособления» – недействителен.
ГОСТ 8284-67 – «Микроскопы биологические. Типы. Основные параметры и размеры» (Указатель 1980 «Государственные стандарты СССР. Том 3») – недействителен.
В настоящее время, руководствуются отраслевыми стандартами, написанными научно-исследовательскими центрами, предприятиями, подразделениями академии наук и её членами. Требования к оборудованию не содержат информации о моделях, производителях, материалах изготовления, характеристиках оптических систем. В общих чертах, указываются только методы контрастирования, кратность увеличения и вид микроскопа. Этого недостаточно, для точного подбора оборудования, в виду невозможности определить:
- наблюдаемое линейное увеличение, не зная кратности окуляров
- разрешение оптической системы
- типа коррекции оптической системы
- спектральный диапазон пропускания фильтров
- тип и характеристики лампы.
Даже зная всё вышеперечисленное, остаётся набор строго индивидуальных требований, которые предъявляют пользователи к своему рабочему месту.
Какой микроскоп нужен для биологии?
Начнём с самых простых задач, для которых понадобится лабораторный прямой микроскоп, например, Olympus CX43. Используется для исследований: анализа спермы (клеточных элементов эякулята), неклеточных элементов, осадка мочи, нативных препаратов крови, активного ила, поперечных срезов филаментов, микрофлоры в мазках, планктона и список можно продолжать до бесконечности.
Рисунок 1. Примеры снимков на LC30 с микроскопа CX43
Область применения микроскопа в биологии зависит от коррекции объективов. Обратите внимание на снимки снизу. На фотографиях ниже запечатлены водоросли. Съёмка проводилась через планахромат PLAN C.
Рисунок 2. Сравнение объективов с коррекцией планахромат и ахромат
А что будет, если установить биологические объективы PLAN C в микроскоп классом выше, например, BX43? Посмотрите на рисунок снизу, сразу станет понятно, что для большей детализации, нет необходимости сильно закрывать диафрагму и терять в освещённости.
Рисунок 3. Olympus PLAN 20x NA=0.40 в BX43
Для серьёзных биологических исследований, флуоресценции и ДИК используйте исследовательские микроскопы
Прямую компоновку предпочтительно применять биологам, занимающимися флуоресцентными наблюдениями. Разберём по порядку. Флуоресценция применяется для анализа, меченных флуорофором, участков молекул, наблюдения и регистрация сегментов хромосом. Преимуществ много, специфичность высокая и для пропускания УФ излучения требуется низкодисперсное стекло или кристаллы. Раньше использовали кристаллы флюорита, из-за чего класс оптики получил своё наименование – Fluorite. Сложная оптика дополняется непростой системой фильтров, позволяющих рассматривать образцы, окрашенные несколькими красителями одновременно. Для достоверных результатов необходимо равномерное освещение образца, обеспечивающее одинаковую резкость по всему полю зрения. Такую равномерность обеспечивают линзы структурно похожие на пчелиные соты.
Дифференциально интерференционный контраст (ДИК) в биологии
Это интересная современная разработка, передающая псевдорельеф изображения. Если Вы никогда раньше не использовали этот контраст, то представьте совмещение поляризации и фазового контраста. Получаемые окрашенные изображения, дают ценную информацию при исследовании живой материи. Из-за поляризационной картины напряжений не стоит применять пластиковую посуду, искажающую его, гораздо лучше подойдёт стекло. Дополнительные компенсаторы, λ-пластинки, могут усиливать, либо ослаблять рельефность изображения.
Поляризационные биологические исследования
Поляризацию используют во множестве прикладных наук, в том числе – биологии. Основные приёмы работы нужно почерпнуть из пособий по кристаллографии. Применяется для поиска оптических неоднородностей, определения стороны поляризации, диагностики кристаллов. Конкретика: для анализа подагры применяют поворотный поляризатор, λ пластинку и поворотный анализатор. Диагностируется болезнь по наличию кристаллов урата, с характерным негативным двулучепреломлением и свечением в скрещенных николях (поляризаторе/анализаторе). Есть специальные анализаторы для CX43 с U-GAN, где не требуется дополнительная λ пластина и вам необходимо вращать только поляризатор. Это значительно экономит время и снижает требования к специалисту. Это частный пример определения концентрации оптически активных веществ в биологических растворах, не менее распространено определение минералов примесей в растительном сырье. Для сложных почвенных экспертиз пользуются BX53P, это биологический современный поляризационный микроскоп с ортоскопией и коноскопией. Коноскопия – поляризационные наблюдения в сходящемся свете, прекрасно подойдёт, если необходимо диагностировать минералы в почве, потому что при скрещивании анализатора и поляризатора, лучи, прошедшие через линзу Бертрана, не дают картинку минерала, а представляет интерференционные эффекты, коноскопические фигуры, по которым определяют количество осей, оптический знак, относительную величину угла между оптическими осями.
По необходимым компенсаторам и поляризаторам Вы можете получить бесплатную консультацию у наших специалистов.
Тёмное поле, используемое биологами
Недорогой и эффективный способ выявления оптически активных объектов. Основан на освещении образца полым конусом света, не отражающимся в объектив. Наблюдатель видит только рассеянное от образца картинку. Таким образом можно заметить прозрачные объекты. Одной из разновидностей методик применяющей такое контрастирование, является ультрамикроскопия, при которой препарат освещается мощным потоком фотонов сбоку. Главное преимущества этого освещения: выявление частиц, размером меньше длины волны видимого спектра. Биологи, в частности ветеринары, применяют его для диагностики лептоспироза.
Рисунок 4. Treponema pallidum в тёмном поле
Фазовый контраст – нестареющая классика
С момента своего появления, самый распространённый метод контрастирования среди биологов. Бактериологи без окраски видят контуры прокариотов, работники санитарных экспертиз легко находят и диагностируют простейших, в КДЛ давно используют PH для оценки качества спермы. Тысяча применений, но настройкой этого контраста хотят заниматься не многие, и для них Olympus сделал прецентрированный фазовый контраст, реализованный в CKX53.
Инфракрасная микроскопия (ИК)
Перспективна для гематологических исследований. Сейчас тестируются ИК определение заболеваний кишечника, содержание многих метаболитов, образованных патологическими изменениями в организме, определение ангины по капле сыворотки крови пациента. Это один из спектрометрических методов исследований основанный на оценке соотношения поглощения-испускания-рассеяния инфракрасного спектра веществами. На макроуровне, с применением MVX10 или SZX16, можно оценивать особенности формирования семян, содержания различных веществ в тканях растений без необходимости их химического анализа.
Как сейчас выбрать биологический лабораторный микроскоп
Сначала определите какой штатив Вам подходит больше. Если Вы будете просматривать объекты прямо в лабораторной посуде (чашках Петри, планшетах, колбах, флаконах), то приобретайте инвертированные микроскопы, если же Вам необходимо большое увеличение и контроль морфологии мелких биологических структур, то выбирайте прямой микроскоп. Обозначьте необходимые методы исследований: дифференциальное окрашивание, ДИК, поляризация (простая или количественная, ортоскопия или коноскопия), dark field (нужна ли ультрамикроскопия с кардиоидным конденсором, либо достаточно NA=0,6). Подберите подходящую оптику, которая должна соответствовать не только предполагаемому контрастированию, но и качеству изображения, которым Вы будете довольны. Приведём классификацию ниже:
Монохроматы – объективы, с исправленными аберрациями для одной длины волны или очень узкой спектральной области, исправлены сферические искажения, кома и астигматизм. Ахроматы исправлены по двум длин волн (узких спектральных диапазонов), скорректированы по: сферические искажения, коме, астигматизму, хроматичезмы положения и, частично, сферохроматические ошибки. Предназначены для работы в спектральной области от линии F (λ=486нм) до C (λ=656нм). У апохроматов коррекция расширена и распространяется на три длины волны, исправлены: вторичный спектр и сферохроматические отклонения, благодаря наличию особых линз и кристаллов с особым ходом частных относительных дисперсий. Распространены половинные решения, такие как полуапохроматы, полуахроматы, которые могут называться иначе: планфлуориты, план С.
Качественно оценивают получаемую картину по волновым аберрациям. У ахроматов для точки на оси волновые отклонения основного цвета, как правило не превышает 0,25λ, а для всей спектральной области, на которую они рассчитаны, не более 0,5λ. Сферическое искажение в апохроматических объективах не превышает 0,1-0,15λ. Для спектральных линий C и F – не более 0,25λ. У самых высоко апертурных объективов (NA>0,95), по краям величины могут быть выше 0,5λ, из-за отклонений высшего порядка, но образ всё равно контрастное и качественное.
План делятся на планахроматы (PLN), планполуапохроматы (UPLFLN) и планапохроматы (PLAPON). они аналогичны соответствующим ахроматами и прочим, но в них существенно лучше исправлены кривизна поверхности и астигматизм, а волновые аберрации в пределах всего поля не превышают 0,5λ.
Выбор конденсора очень важен для биологического микроскопа, потому что от этого также зависит разрешающая способность всего микроскопа
Конденсоры, как и остальная оптика, подразделяются по степени коррекции аберраций, рабочему расстоянию, числовой апертуре и дополнительным вставкам для контраста. Это очень важный модуль микроскопа, от этого зависит равномерность освещения образца. Этот компонент недооценивается многими потому, что в школьных микроскопах на уроках биологии он отсутствует, есть лишь зеркало и отверстие в столике, но для себя, необходимо сравнить картины, получаемое без конденсора, и с ним. Дело в том, что некогерентный и ненаправленный свет от лампы, распространяется во всех направлениях, частично отражаясь и рассеиваясь, а значит на предметное стекло, попадает, не более 15-20%. Именно электромагнитные волны формируют картинку, и от их количества зависит разрешающая способность всей системы. Апертура – это угол, под которым линза собирает или испускает лучи, если у конденсора она выше, чем у объектива, то лучи, проходящие мимо детектора просто засоряют рисунок. Когда происходит обратное, у чечевиц NA выше, они не раскроют весь свой потенциал.
Заключение
Значимость микроскопии в биологических лабораториях трудно переоценить. Основные направления развития: новые способы контрастирования, селективные флюорофоры, спектрометрические методы, линзы сверхвысокого разрешения, съёмка на камеры с высокими выдержкой или фреймрейтом. Вплотную к оптическому пределу подошли конфокальные системы, а атомно-силовые микроскопы (АСМ) даже преодолели его.